


**9**(1): 131-132(2017)

ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239

# Jasmonates Improve Flowering at the expense of Runner Production in Strawberry

Mohammad Javad Mahdavi\* and Rahele Seifi\*\*

\*Department of Agricultural Sciences, Payame Noor University, Tehran Iran; Ph.D. Student, Faculty of Natural Resources, University of Kashan, Iran \*\*Department of Agricultural Sciences, Payame Noor University, Tehran Iran

(Corresponding author: Mohammad Javad Mahdavi) (Received 15 December, 2016, Accepted 15 January, 2017) (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Now a days, hydroponically strawberry production in greenhouse is noticeably increasing in Iran, however there are several problems including low yield, low fruit quality, misshaped fruits and susceptibility to environmental stresses. Using of plant growth regulators is a important means to ameliorate above mentioned problems. Therefore, in this research the effect of foliar application of Jasmonic Acid(JA) at the rate of 0, 0.5, 1, 1.5 and 2 mM and Methyle Jasmonate(MJ) at the rate of 0, 0.25, 0.5, 1 and 1.5 on flowering, and runner production of strawberry cultivars (Paros and Selva) was investigated. Results indicated that both JA and MJ at the rate of 1.5 mM produced the greatest number of flower and inflorescence per plant. JA at concentrations of 1.5 and 2 mM and MJ at 1.5 mM significantly decreased the number of runners.

Keywords: Fragria ananassa Duch., Jasmonic acid, Methyle Jasmonate, Runnering.

### INTRODUCTION

Strawberry (Fragaria x ananassa Duch.) is a dicotyledonous plant belongs to Rosaceae family. According to FAO, high portions of strawberry production comes from United states, Spain, Japan, Poland, Italy and south korea (FAO, 2006). Strawberry production under hydroponic conditions in greenhouse is an ever increasing industry. Although there are some problems such as low yield, poor quality and sensitivity to indoor conditions (Eshghi and Jamali, 2009). Production of fruits with high quantity and quality is among the general goals of growing strawberry in greenhouse. Usage of plant bioregulators such as Jasmonic acid (JA) has been the subject of many studies, for improving the yield and quality of fruits in different species but literatures on strawberry are relatively limited. So the aim of this investigation was to evaluate the effect of JA on vegetative and reproductive growth of 2 strawberry cultivars: ' Paros' and 'Selva'.

#### MATERIALS AND METHODS

For assessing the effect of JA on 2 cultivars of strawberry including 'Selva' and 'Paros', the present study was carried out in a completely randomized design. Rooted daughter plants for each cultivar, were potted in plastic pots filled with 1:1:1 vermiculite and perlite, grown in greenhouse under hydroponic conditions and fertigated with Melspray solution. After their establishment the treatments were foliar applied and replicated at the time of flowering. Treatments included: methyl jasmonate at 0, 0.25, 0.5 and 1.5 mM and Jasmonic acid at 0, 0.5, 1, 1.5 and 2 mM concentrations. For each experiment there were 4 replications, each of which had 3 pots with a plant. The number of runners, fruits, flowers and inflorescences per plant were calculated during the experimental period by counting them twice a week the data were analyzed by SPSS 16 software using the LSD test for comparing the means.

## **RESULTS AND DISCUSSION**

The effect of JA and methyl jasmonate on number of runners, fruits, flowers and inflorescences of 'Paros' and 'Selva' strawberry.

The effect of JA and methyl jasmonate was not similar in both cultivars. As it has been indicated in table 1, number of runners decreased after JA and methyl jasmonate treatments. Low concentrations of both compounds did not affect this parameter in 'Selva' strawberry but increased parameters in 'Paros'. Staswick (1992) reported and inhibitory effect of JA on the growth of roots and stalks of plants. Norastehnia (2007) showed a reduction of growth in maize after methyl jasmonate application. JA at 1.5 mM had the highest effect on the number of flowers and fruits, and caused the plants to bear more flowers and fruits in comparison to methyl jasmonate.

#### Mahdavi and Seifi

|                          | Runners |        |         | Fruits  |         |         |
|--------------------------|---------|--------|---------|---------|---------|---------|
|                          | Paros   | Selva  | Average | Paros   | Selva   | Average |
| <b>JA</b> <sub>0.5</sub> | 1.3B    | 0.31cd | 2.27ab  | 20.95BC | 15.7a-d | 3.2f    |
| $JA_1$                   | 1.2B    | 0.27d  | 2.13ab  | 21.1BC  | 16.3a-c | 5.2ef   |
| JA <sub>1.5</sub>        | 1.05B   | 0.13d  | 1.79ab  | 13.7BC  | 17.3ab  | 10b-f   |
| JA <sub>2</sub>          | 0.86B   | 0.10d  | 1.62ab  | 17.5A   | 20.2a   | 14.8ad  |
| MJ <sub>0.25</sub>       | 2.22A   | 2.25ab | 2.19ab  | 4.2A    | 7.1c-f  | 1.3f    |
| MJ <sub>0.5</sub>        | 1.75AB  | 1.31bc | 2.18ab  | 7.1BC   | 9.8b-f  | 4.4ef   |
| $MJ_1$                   | 1.68AB  | 1.31bc | 2.04ab  | 11.9BC  | 15.2a-d | 8.6b-f  |
| MJ <sub>1.5</sub>        | 0.92B   | 0.06d  | 1.77ab  | 10BC    | 13.3а-е | 6.7def  |
| Control                  | 2.34A   | 2.36a  | 2.3ab   | 3C      | 2f      | 3.9f    |
| Average                  |         | B 0.89 | A 2.02  |         | A 12.9  | B 6.4   |

# Table 1: Number of runners and fruits of 'Paros' and 'Selva' strawberry as affected by jasmonic acid and methyl jasmonate of different concentrations.

Means followed by the same latter within cultivars and columns are not significantly different at 5% probability using LSD test.

 Table 2: Number of flowers and inflorescences of 'Paros' and 'Selva' strawberry as affected by jasmonic acid and methyl jasmonate of different concentrations.

|                   |          | Inflorescences |         |          |          |         |
|-------------------|----------|----------------|---------|----------|----------|---------|
|                   | Selva    | Paros          | Average | Selva    | Paros    | Average |
| JA <sub>0.5</sub> | 11.45с-е | 11.73а-с       | 11.6A   | 10.75b-e | 10.56c-f | 10.65A  |
| JA <sub>1</sub>   | 11.71abc | 11.19b-e       | 11.44AB | 10.77b-f | 10.41d-f | 10.58A  |
| JA <sub>1.5</sub> | 12.46a   | 10.81с-е       | 11.63A  | 11.33ab  | 10.19ef  | 10.76A  |
| JA <sub>2</sub>   | 12.31ab  | 10.63с-е       | 11.47AB | 10.92a-c | 10.25c-f | 10.59A  |
| $MJ_{0.25}$       | 11.2de   | 10.52de        | 10.86AB | 10.31C-f | 10.19bf  | 10.25A  |
| $MJ_{0.5}$        | 10.81c-e | 10.56de        | 10.68AB | 10.33c-f | 10.21d-f | 10.27A  |
| $MJ_1$            | 11.46a-d | 10.73с-е       | 11.12AB | 10.45c-f | 10.79b-d | 10.62A  |
| MJ <sub>1.5</sub> | 11.73abc | 10.77с-е       | 11.25AB | 11.42a   | 10.27d-f | 10.85A  |
| Control           | 10.72cde | 10.09e         | 10.41B  | 10.29d-f | 10.16 f  | 10.26A  |
| Average           | A 11.53  | B 10.78        |         | A 10.73  |          | B 10.34 |

Means followed by the same latter within cultivars and columns are not significantly different at 5% probability using LSD test.

'Selva' had more flowers and fruits than 'Paros'. Pérez *et al* (1997) indicated that methyl jasmonate caused a 55% higher growth of strawberry fruits when compared with control samples.

As it has been shown in table 2, the greatest effect of the both compounds occurred when they were applied at 1.5 mM concentration and 'Selva' had had a higher number of inflorescences than the other cultivar.

In conclusion, our results suggest that exogenously applied JA and methyl jasmonate may increase the number of inflorescences, flowers and fruits and inhibitory on the growth of roots and stalks of plants.

#### REFERENCES

FAO. (2006). FAO state agricultural statistics database, retrieved from www.FAO.org

 Norastehnia A., R. H. Sajedi and M. Nojavan-Asghari.
 (2007). Inhibitory effects of methyl jasmonate on seed germination in Maize (ZEA MAYS): Effect on -AMYLASE activity and ethylene production. *Gen. Appl. Physiology.* 33: 13-23.

- Pérez A., C. Sanz, R. Olías, and J. M. Olías. (1997). Effect of methyl jasmonate on in vitro strawberry ripening. *J. Agric. Food Chem.*, 45: 3733-3737.
- Eshghi S., B. Jamali. (2009). leaf and fruit composition and quality in relation to production of malformed strawberry fruits. *Hort. Environ. Biotechnol.* 50: 397-400.
- Staswick P.E., W. Su, S.H. Howell (1992). Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. *Proc Natl Acad Sci U S A*, 89: 6837-6840.